EQUAÇÃO GERAL DE GRACELI.

 G ψ = E ψ =  E [G+]....   =

G ψ = E ψ =  E [G+ψ ω /c] =   [/ ] /  /   = ħω [Ϡ ]  [ξ ] [,ς]   ψ μ / h/c ψ(xt)  [x  t ]..



Movimento e energia

De acordo com a teoria da relatividade especial de Einstein, a medida que um elétron se aproxima da velocidade da luz, do ponto de vista de um observador sua massa relativística aumenta, e por causa disso torna-se mais difícil acelerar a partir de dentro do plano do observador de referência. A velocidade do elétron pode se aproximar, mas nunca alcançar, a velocidade da luz no vácuo, c. Entretanto, quando elétrons relativísticos- isto é, elétrons se movendo a uma velocidade próxima de c-são injetados em um meio dielétrico tal como a água, onde a velocidade local da luz é significantemente menor que c, os elétrons temporariamente se movem mais rápido do que a luz no meio. A medida que interagem com o meio, eles geral uma luz fraca denominada radiação Cherenkov.[129]

O gráfico inicia no zero e se curva rapidamente para direita e para cima
Fator de Lorentz em função da velocidade. Inicia com o valor 1 e tende ao infinito a medida que v se aproxima de c.

Os efeitos da relatividade especial são baseados em uma quantidade conhecida como fator de Lorentz definido como  onde ‘’v’’ é a velocidade da partícula. A energia cinética Ke de um elétron se movendo com velocidade v é:

 / 
G ψ = E ψ =  E [G+]....   

onde me é a massa do elétron. Por exemplo, o Centro Acelerador Linear de Stanford pode acelerar um elétron a aproximadamente 51 GeV.[130] Uma vez que um elétron se comporta como um onda, em uma dada velocidade tem a característica do comprimento de onda de Broglie. Isto é dado por λe = h/p onde h é a constante de Planck e p é o momento.[52] Para o elétron de 51 GeV acima, o comprimento de onda é aproximadamente 2.4×10−17 m, que é pequeno o suficiente para explorar estruturas inferiores ao tamanho do núcleo atômico.[131]

Comentários

Postagens mais visitadas deste blog